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Abstract-The solution of the constant-property boundary-layer equations for momentum, mass, and 
energy transport, including blowing, surface tangential displacement. and the interdiffusion term, in the 
flow over a vaporizing sphere is obtained by series solution retaining the first three terms. The results of a 
large number of calculations are presented in the form of ratios of Nusselt and Sherwood numbers with 
and without phase change for mono and bicomponent droplets. These calculations span a large range of 
the mass and heat transfer numbers, which are used to correlate the results. A global interdiffusion 
parameter is defined and also used to correlate the Nusselt number ratio. High order correlations are also 
presented. The validity of the correlations for nonzero surface tangential velocity is evaluated through 
sensibility analysis. The results show that one can use the obtained correlations for the blowing effect for 

a general surface velocity condition. 

INTRODUCTION 

MASS AND energy exchanges between a dispersed 
phase and a continuous convective flow occur 
frequently in several practical situations. Direct heat 
transfer vaporization, liquid-liquid extraction, spray 
drying and spray combustion are common examples. 
In the analysis of such complex phenomena, it is com- 

mon to study the behavior of only one particle of the 
dispersed phase which is assumed to be spherical. 
Particle interactions are usually incorporated as cor- 
rection factors. When heat and mass transfer occur 
simultaneously, the coupling of mechanisms becomes 
possible. The flow caused by phase change (Stefan 
flow) modifies the flow conditions, increasing the 
characteristic lengths for heat and mass transfer with 
a consequent reduction in their rates. Moreover, the 
interdiffusion of species with different partial molar 

enthalpies generates an extra term in the energy con- 
servation equation. The existence of coupled bound- 
ary conditions at the sphere surface contributes to the 
complexity of the phenomenon. 

In spray applications, the phenomena of interest 
occur in the low to moderate Reynolds number 

regime. Furthermore, it is desirable to have a simple 
yet accurate droplet submodel to be used in spray 
calculations. Accordingly, several simplifying hypoth- 
eses have been proposed and evaluated in the past. 
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For stagnant environments, Hubbard et at. [1] verified 
that the quasi-steadiness of gas-transport processes is 
justifiable for low’to moderate pressures (up to 10 
atm). They also verified that a reference state can be 
used to calculate the gas properties, and they recom- 
mended the ‘l/3 rule’. The use of quasi-steady cor- 
relations for drag, Nusselt, and Shetwood number for 
the transient vaporization of a heptane droplet in 
its own vapor and in air has been investigated by 
Renksizbulut and Haywood [2], Haywood et al. [3] 

and Renksizbulut et al. [4] through comparison with 
fully numerical results. They have found that such 
correlations can account for variable properties effects 
and droplet transient heating provided convenient 
film conditions and an effective latent heat are defined. 
However, Bussmann and Renksizbulut 1.51 verified 

that the drag coefficient is not well predicted by the 
existing steady-state correlation for very volatile fuel 
droplets. 

These quasi-steady correlations for the Nusselt and 

Sherwood numbers can be obtained through exper- 
iments (6,7] or by theoretical calculations through 
either numerical solution of the conservation equa- 

tions [4,8], or boundary-layer approximation [9]. The 
last approach consists in matching the boundary-layer 
solution and the analytical solution for the stagnant 
droplet case. This matching procedure is an extension 
of the film theory that incorporates the thickening of 
the film due to the Stefan flow, and is called extended 
film theory [IO]. It reduces to the classical film theory 
[I I] as the transfer numbers tend to zero and con- 
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NOMENCLATURE 

B, mass transfer number 3 normal coordinate 

5,n, modified mass transfer number for 

component i, (Y,\- yi,)/( I - j, Y,~) .fek s~~~o~on~ 

4 heat transfer number 7, ratio between the partial specific heat of 

5, heat transfer number based on mixture the component i in the mixture and the 

specific heat specific heat of the mixture, C,,,/C, 

C, specific heat at constant pressure 
f-, interdiffusion heat transfer paramctcr, 

.f function in II/ series expansion 
(Y, - ;‘g %/Se&( Y,\ - y,, ) 

d 
I? function in 0 series expansion 

fraction of the ideal flow tangential 

H effective latent heat, Q,/ti 
velocity which is imposed to the sphere 
surface 

k thermal conductivity A 
ril rate of mass changing phase 

global interdiffusion parameter 
c 

M dimen$onless rate of mass changing phase, 
fraction rate of mass changing state 

~il~(2~R~~~i ) 

c dimensionless surface-axis of symmetry 

N number of iomponents in the liquid sphere 
distance, F/R = sin 5 

NM Nusselt number 
4 dimensionless normal coordinate, rjR 

d j(35e)rl 
P function in IT series expansion 
Pe Peclet number, Re Pr 

0 dimensionless temperature, 

f+,,, mass transfer Pcclet number, Re SC 
(T- T,NT, - T,) 

v 
Pv Prandtl number 

kinematic viscosity 

heat transfer rate to the sphere 
ic 

QT 
dimensionless tangential coordinate. x/R 

fI dimensionless mass fraction. 
9 r dimensionless heat transfer rate to the 

sphere, Q, i(nRk( T, - T,)) 
(Y- Y,)/(Y, - J’,) 

surhce-axis of synlmetry distance 
P density 

r 
ri, stream function. 

R sphere radius 
Re Reynolds number, u, R/v 

SC Schmidt number Subscripts 
S/z Sherwood number D diameter based 
T temperalur~ e ideal flow 
u tangential velocity g gas phase 

u, ideal flow tangential velocity i component i or function i 
u dimensionless tangential velocity, u/u 1,, or s sphere surface 

the coefficients in its series expansion x free stream. 
UC ideal flow dimensionless velocity, 

u,ju, = 1 .S sin < 

I’ normal velocity Superscipts 
V dimensionless normal velocity, L$A ,. component i 

.x tangential coordinate h without phase change. 

veniently separates the Nussclt and Sherwood num- 

bers into stagnant and convective contributions in the 
form : 

where (Nu$Nu,), is the ratio of Nusselt numbers 
without and with vaporization for the large Reynolds 
number approximation. A similar equation holds for 
the Sherwood number. The reduction in the Nusselt 
and Sherwood numbers due to blowing, for the large 

Reynolds number range, has been represented by the 

factor (I+ B) -“-‘, where B is either B, or B, and 5, 
5, < 20. These results have been obtained for Row 
over wedges and used in the sphere problem under 
the hypothesis of independence of geometry. The 
interdiffusioll term was neglected in the energy con- 
servation equation. 

The Nusselt number correlation obtained by 

Renksizbulut and Yuen [7] and the Sherwood cor- 
relation given by Renksizbulut ef al. [4] also present 
a (I +5) -O’ factor to account for the reduction of 

the transport processes due to blowing. The Nusselt 
number correlation is based on experiments with 
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monocomponent droplet where R, < 2.8 and has been 

successfully used to predict the Nusselt number 
history in the transient vaporization of heptane drop- 
lets by Renksizbulut and Haywood [2] and Haywood 
et al. [3]. However, they did not report the B, number 
range obtained in their numerical simulations. The 
interdiffusion term was accounted for in the energy 
equation but no attempt has been made to verify its 
direct inlhicnce on the Nusselt number. The above- 
cited numerical simulations have been used by 
Renksizbulut ef nl. [4] to derive their Sherwood num- 
ber correlation. which compared well with the data of 

Downing [I21 and Renksizbulut [I 31. The B, number 
range obtained in the simulations was not reported, 
but it can be inferred from their Fig. 1 that B, < 2.2. 
They compared the correlation predictions to the 
Sherwood number history numerically obtained for 
the vaporization of a decane--hexadecane mixture. 
Although the agreement was fairly good, the B, 
number range was not reported. Bussmann and 

Rcnksizbulut [5] numerically simulated the vapor- 
ization of a very volatile liquid droplet and compared 
the obtained Nusselt and Sherwood numbers to those 

given by the correlations of Renksizbulut and Yuen 
[7] and Renksizbuiut CI ~1. [4]. The agreement was 
fairly good. For this case B.r was as large as 61 and B, 
was around 10. 

In the works cited above, the effect of blowing has 
only been correlated for low transfer numbers. How- 
ever, for multicomponcnt droplets, the mass transfer 
number is defined in terms of the fractional vapor- 
ization rate and can indeed assume very large values 

(up to 100). Besides, the heat transfer number can be 
quite large for a very volatile fuel droplet. The results 
so far show that the reduction in the Nusselt and 
Sherwood numbers due to blowing can be represented 
by a (I+ B))‘.’ factor, with no dependence on the 
Reynolds or Prandtl (Schmidt) numbers. However, 
even though the interdiffusion term in the energy con- 
servation equation is considered in deriving the film 
theory, its direct effect in the Nusselt number has not 
been analyzed yet for convective fields. Another point 
that still needs further investigation is the influence of 
surface velocity on the Nusselt and Sherwood 
numbers. This velocity can be indeed quite appreci- 
able: Renksizbulut and Haywood [2] and Haywood 
it uf. [3] obtained maximum surface tangential 
velocities as large as 24% of the free stream velocity. 
However, they did not carry out a systematic study of 
the effect of surface velocity in the correlations used 
to predict Nusseit and Sherwood number behavior. It 
should be pointed out that most of the experiments 
carried out on droplet vaporization have been per- 
formed with porous spheres or suspended droplets 
where internal circulation is partially or completely 
eliminated. 

Thus there are still some restrictions in the appli- 
cability of the existing correlations for Nusselt and 
Sherwood numbers, and further investigation is 
necessary. In order to eliminate some of the above- 

cited restrictions, the present work carries out a para- 
metric analysis of the solution of the momentum, 

energy and mass boundary layer equations for flow 
over a sphere. The framework of the extended film 
theory is adopted here, and the ratios of the Nusselt 
and Sherwood numbers with and without phase 
change are determined, under the boundary-layer 
approximation, and correlated with the transfer 
numbers. The boundary-layer analysis does lead to 
an underestimation of the Nusselt and Sherwood 
numbers, because it cannot account for the wake 
region. However, this error has been estimated to be 
around 15% [3, 141, which should not appreciably 
affect the functional form of the blowing correction. 
The basic goals are to expand the range of transfer 
numbers in the blowing correction, to determine the 
direct effect of the interdiffus~on term on the heat 
transfer, and to evaluate the ell’ect of tangential sur- 
face velocity on correlations derived for no tangential 
velocity. 

ANALYSIS 

Some basic assunlptions are used in applying the 
steady laminar boundary layer theory to the heat and 

mass transport phenomena in a fluid flowing over a 
sphere. These assumptions are : 

(I) The Reynolds number is high enough so that 
the boundary layer approximation is applicable and 
the gravitational forces are negligible ; 

(2) Curvature effects are negligible ; 
(3) The Stefan flow is not enough to blow out the 

boundary layer; 
(4) The frco stream fluid is not soluble in the liquid 

sphere ; 
(5) Mass diffusion is considered to be given by 

Fick’s law : 
(6) The physical properties ofthe fluid are constant; 
(7) Viscous dissipation is negligible and the pressure 

variation effect in the energy transport does not need 
to be considered (small Eckert number). 

In addition, it is at first assumed that the surface 
tangential velocity is negligible. The effect of this 
assumption on the heat and mass transfer phenonlen~i 
will be theu examined by considering the surface 
tangential velocity to be a fraction of the ideal flow 
velocity over a sphere. Hypotheses (1) and (2) arc 
reasonably met for the Reynolds number range used 
to obtain the asymptotic behavior of the Nusselt 
and Sherwood numbers for high Reynolds numbers 
(I 00 < Re,, < 1000). Hypothesis (3) above is met by 
requiring that the boundary layer thickness for the 
case with phase change does not surpass the thickness 
for the case without phase change in more than 20%. 
Hypothesis (5) is only to simplify the analysis and 
hypothesis (6) is in agreement with the utilization of 
iilm conditions for the fluid in the boundary layer. 
Hypothesis (7) is non-restrictive for the Reynolds 
number range analyzed. The boundary conditions for 
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heat and mass transfer at the sphere surface are con- 
stant temperature and concentration. This agrees with 
any uniform-surface temperature liquid phase model 
where the composition at the surface is calculated 
through phase-equilibrium at the given surface tem- 
perature. 

Using the above assumptions, the steady laminar 
boundary layer equations for mass, momentum and 
energy conservation can be written in dimensionless 
form as 

i= I,...,N (4) 

The boundary conditions are 

B = 0, u= SU,(O, n, = 0, 0 = 0, 

(6) 

‘I --t m. u= UC((), n, = I, o= I. (7) 

A stream function can be defined to satisfy the 
continuity equation (equation 2) as 

Then I,!I, UC,, < can be expanded in series of odd powers 
of 5 (odd functions) and fI, and 0 in series of even 
powers of 5 (even functions) : 

S(T) = i i:,+,(Z’+’ (9) 
, - (I 

cl/,(() = i: uz,+,<“+’ (10) 
, = 0 

TI,((,fj)= C (“pi,(fj), i= I ,..., N (12) 
i-0 

O(s’.rT) = i: <“!I>,($ (13) 
I 0 

where rj = J(3 Re) u is a scaled normal coordinate 
due to the small thickness of the boundary layer. 

Using equations (8)-( 13) in equations (2)-(S), and 
after some algebraic manipulation, the ordinary 
differential equation systems for the first three terms 
in each series are given by 

2/.;“+2f,,f’;‘+ I -,f’;z = 0 (14) 

0. i= l,...,N (15) 

v-a> .fG,+, = I, ,j=O,l,2, pi,=l, h,=l, 

pi, = 0, 112, =O, ,j=l.2, ;=I,..., N. (24) 

It is interesting to notice that the interdiffusion term 

in the energy equation is present even in the differ- 
ential equation for the zcroth-order component in the 
temperature expansion, /I”. 

The separation point of the flow is determined using 
the condition of zero tangential stress with the first 
two terms in the velocity series expansion (the three 
term approximation is unable to determine a real 
value for the separation point). Although this is a 
crude approximation for the separation point, it does 
not significantly affect global quantities for the heat 
and mass transfer processes. Since there are large 
gradients of temperature and concentration only near 

(16) 

.f;“‘+f’,.f;-~f~f++f;‘f,+,f,J’;‘+2 = 0 (17) 

&:..+.Wf.;pl-; (.f’, +2f‘&G = 0, 

i= l,...,N (18) 

;++.f,/li+ 
( 

,i, $,:‘-f; hz 
> 

+ 1 =o (19) 

.f;” + .f,./:‘- 3J’;f‘; + ?/Y’.f; - 5/;’ z + -‘$ (T!fi +f’,),f; 

+ (Y.f3- S.f, ).f‘;‘+ 8 = 0 

~pb..+.f,p’;-2f;p;+(,:,/;+,:..1\- &.f,)p;; 

- ;(?f3 +.f’,)p’; + :f’;& = 0, i = I, . , N 

&;+.f,h;+ 
( 

,;, $I-21; h, 
> 

(20) 

(21) 

+(,~.fS+~~~.fi-~f’,)h;-:,(?f,~f’,)hi = 0 (22) 

where the primes represent differentiation with respect 
to q. The boundary conditions become 

yI=o, f” 2,+1 - - 6, pi, = 0, 112, = 0. 

i=l,..., N, j=O,1,2. (23) 
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the front stagnation point, the contributions for 
global quantities of the wake region and regions near 
the separation point are usually small. Accordingly, 

the error in neglecting the wake region in the heat and 

mass transfer processes has been estimated by 
Prakash and Sirignano [14] to be less than 15% and 
Haywood et al. [3] obtained values under 10% in their 
numerical calculations. Since this error is present in 
both the vaporizing and non-vaporizing cases, it is 
believed that it will not affect the functional form of 

the blowing effect correction. 
Once the separation point, t,, is known, the global 

quantities are determined through integration. The 
most important global quantities are the dimen- 
sionless rate of phase change and the total heat trans- 
fer to the sphere which are given by 

d5 

(25) 

&x2 (26) 

where 6,, is the Kronecker delta. These quantities 
allow one to define the mass and heat transfer 
numbers 

Y,\ - y,, 
B, = _..____ 

6 - y,, 
(27) 

where His the effective latent heat and 

M= i M,, 
M, 

&,=-. 

I- I M 

The mean Nusselt and Sherwood number can be 
determined by integration of the local Nusselt and 
Sherwood numbers and division by the total sphere 
surface area, which results in 

Nu, = s (30) 
0 

dt. (31) 

There are another two dimensionless numbers of 

interest, the heat transfer number based on the mix- 
ture specific heat, BT, and the global interdiffusion 
parameter, A 

*=fi 1+2. 
,= I ( .> 

(33) 

NUMERICAL PROCEDURE 

The basic problem consists of solving the two-point 
boundary value problem given by equations (14)- 

(24). This system of nonlinear ordinary differential 
equations is transformed in a system of first order 
nonlinear ordinary differential equations which is then 
solved by the routine DBVPFD of the IMSL library 
(version IO) with a required tolerance of 0.1% in all 
variables and their derivatives. The boundary con- 
dition at q + CIC: is assumed at a point far enough from 
the sphere surface. It has been found that q = 0.8 
provides converged results. The DBVPFD routine 
performs the solution of the system of first order 
differential equations using the variable order, vari- 
able step size finite-difference method with deferred 

correction proposed by Pereyra [15]. The system 
Jacobian has been calculated analytically and used 
with BVPFD routine. As a check the routine itself is 
allowed to calculate the Jacobian by finite-differences, 
and the same results were obtained. Once ,f?,+ , , h2,, 
p;, and their derivatives are known, all the relevant 
quantities are determined analytically. 

RESULTS AND DISCUSSION 

Firstly, the Nusselt number for a sphere without 
phase change has been determined for several 
Reynolds and Prandtl numbers and assumed surface 
velocities. The contribution of the third term in the 
series expansions to the Nusselt number value proved 
to be quite small, having a maximum value of 0.65%. 
The correlations obtained and related information are 
summarized in Table 1. All these correlations give the 
expected Nui dependence with the square root of Re,. 

Moreover, the Nui correlation for no surface velocity 
is in good agreement with the convective part of the 
Ranz and Marshall [6] and Renksizbulut and Yuen 
[7] (without vaporization) correlations. The dis- 
crepancies in the multiplying constant and Pr 

exponent correspond to the expected underestimation 
of the Nusselt number, being below 15% (for 
Pr < 20). This gives good confidence in the series solu- 
tion approximation developed above. It should be 

pointed out that the correlations obtained from 
experiments with droplets could have some effect on 
tangential surface velocity. For instance, the mul- 
tiplying constants of previous correlations [6.7] are 
within the range of values obtained when a tangential 
velocity is imposed at the surface. Using the heat- 
mass transfer analogy, the Sherwood number in the 
limit of no mass transfer has the same functional form 
obtained for the Nusselt number, that is 

Nuj(Rel,, Pr) = Shj(Re,, SC). (34) 

A large number of simulations were performed for 
mono and bicomponent liquid spheres at different 
values of the governing parameters in equations (2t 
(5), spanning the ranges : 

100 < Re, < 1000, 
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Table I. Calculations for cases without phase change. The correlation is Nuy) = 
u Reh, Pr’ Ranges : 50 < Re, < 1000 and 0.5 < Pr < 20. Maximum relative error 

of correlation : 0.6% 

% of ideal Row Parameters 
velocity assumed at Number of 
the sphere surface calculations U h (’ 

0 81 
10 81 
20 81 
30 81 

0.5 6 Pr, SC < 20, 

0.1 < B,,, < 20. 

After solving the two-point boundary layer 
problem, the results arc analyzed and they are rejected 
if the contribution of the third term in series solution 
to the Nusselt and Sherwood numbers is larger than 
5% or the thickness of the boundary layer in the 
separation point corresponds to an increase above 
20% over the thickness for the case without phase 
change. These conditions are imposed to restrict the 
analysis to the cases where the boundary layer 
approximation should be valid. The valid calculations 
summed up to more than II00 for a monocomponent 
and more than 1400 for a bicomponent liquid sphere. 
These result in about 2600 data points for the ratio 
Nu,,/N& and about 4000 data points for the ratio 

Slr,,,/Slri,. All these data points cover the following 
range of dimensionless numbers : 

0 < B, < 90, 

O-C&<175 

I < A < 12.5. 

The traditional correlation of the ratio of the Nus- 
selt numbers with and without phase change is given 

by 

(35) 

and a similar correlation exists for Sh, and B,. These 
correlations arc presented in Figs. 1 and 2. for the 
Nusseh and Sherwood numbers. respectively. The 
exponent a is found by regression to be -0.71 I for 
heat transfer and -0.689 for mass transfer. Both 
exponents are very close to the value -0.7 given by 
previous correlations [4,9,7], some of which based on 
experimental data. The maximum and mean errors 
for the correlations are, respectively, 36% and 6% for 
the Nusselt number ratio and 20% and 3.5% for the 
Sherwood number ratio. Although a single coefficient 
can fairly describe both phenomena, there is a large 
scatter in the Nusselt number ratio and the two sets 
of data points undoubtedly present curvatures. These 
trends have not been noted in the previous works 
because those were restricted to small transfer 

0.5314 0.5000 0.3588 
0.5679 0.5000 0.3904 
0.6023 0.5000 0.4143 
0.6350 0.5000 0.433 I 

0 1 component 

A 2 components 

10-l 1C 

(1+B.g 

FIG. I. Effect of mass transfer on Nusselt number--classical 
correlation (a = -0.71 I). 

numbers. The large data scatter was expected due to 
the attempt of representing the blowing corrections 
by a prescribed functional form in terms of combined 
parameters (the transfer numbers). 

FIG. 2. Effect of mass transfer on Sherwood number--classi- 
cal correlation ((I = -0.689). 
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FIG. 3. Nusselt number correlation including the global 
interdiffusion parameter. A (0 = - 0.690 and b = - 0.178). 

The large scattering observed in the Nusselt number 

ratio is partially due to the effect of interdiffusion. An 
equation of the form 

Null 
Nuj = (I +&)“A” 

has been used to correlate the data attempting to 
incorporate the effect of interdiffusion and the fol- 
lowing parameters were obtained : a = - 0.690 and 
h = -0.178, with a maximum error of 30% and a 
mean error below 3%. This correlation and the data 
points are shown in Fig. 3. Besides the improvement in 
the correlation with a decrease in the data scattering, it 
is remarkable that the exponent of (1 +B,) has not 
been much altered and that its value is basically the 
same obtained for the exponent of (I+ B,) in the Sher- 
wood correlation. Such agreement corroborates the 
validity of A as a dimensionless number to incorporate 
the effect of interdiffusion in the analysis. However, 

there is still curvature in the data points in the log- 
log representation. It should be noticed that the effect 
of the interdiffusion term vanishes for no vaporization 
and increases as the SC, number decreases, as one 
would expect from physical considerations. 

As an attempt to better represent the data, a second 
order polynomial in the logarithm of (1 + BT) for heat 
transfer and of (1 +B,) for mass transfer has been 
used. Keeping the global interdiffusion parameter, A, 
we propose the following correlations 

Nu,: = (I +&)“A” exp [c In’ (I +&)I (37) 

where a = -0.651, b = -0.192 and c = -0.0126, 
with maximum error of 24% and mean error below 
3%, and 

%, 
shT = (l+&)’ exp[b In’ (1 +I$)] 

D, 
(38) 

lo-’ 

(l+B&’ Ab exp[c log’(l+B,)] 

10” 

FIG. 4. High order correlation for the effect of mass transfer 
on the Nusselt number, including the effect of interdiffusion 
in the energy conservation equation (u = -0.651, 

h = -0.192 and c = -0.0126). 

where a = -0.619, b = -0.0230, with a maximum 
error of II % and a mean error of 2%. These two 
correlations, as well as the data points used to generate 
them, as presented in Figs. 4 and 5, for the Nusselt 
and Sherwood number ratio, respectively. It can be 
seen that the data points are in very good agreement 
with the correlated straight lines. The improvement 
is really remarkable for the Sherwood number ratio 
correlation, being only marginal for the Nusselt num- 
ber ratio correlation. As obtained in previous works, 
no dependence on Re,, Pr or SC has been found in 

the correction for mass transfer. 
The effect of existence of tangential surface velocity 

is verified by assuming that it is given by a fraction of 
the velocity of the ideal flow past a sphere. From 

100 - 

OS 

w 
\ 

6 

i2 

10-l - 

0 1 component 

A 2 components 

10-l 

(l+BJa exp[b ln”(l+B,)] 

-1 

100 

FIG. 5. High order correlation for the effect of mass transfer 
on the Sherwood number (U = -0.619 and b = -0.0230). 
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I s ‘111111 I 
10-l 100 

(l+BT)a Ab exp[c lnZ(l+B,)] 

FIG. 6. Effect of tangential surface velocity on Nusselt num- 
ber. 

0 30% ideal flow 

10-l 
(l+BJa exp[b ln2(1+B,)] 

100 

FIG. 7. Effect of tangential surface velocity on Sherwood 
number. 

Renksizbulut and Haywood [2], the maximum surface 
velocity may be as large as 24% of the free stream 
velocity (that is, 6 - 0.16). Over 800 calculations have 
been carried out assuming 10, 20 or 30% (S = 0. I, 0.2 
and 0.3, respectively) of the ideal flow velocity at the 
sphere surface for mono and bicomponent liquid 
spheres. The results were used to perform a sensibility 
analysis of the correlated ratios Nu,/Nui and 
.Sh,/Shj,, where the dimensionless numbers without 
phase change are those obtained for the same surface 
velocity condition. The comparison between these 
data points and the correlations obtained for the 
ratios of Nusselt and Sherwood numbers, equations 
(37) and (38) are shown in Figs. 6 and 7, respectively. 
For the case of 10% ideal flow velocity, the largest 
deviation for the Nusselt number ratio is 26% and for 

the Sherwood ratio is 8%. For the largest assumed 
surface velocity, these maximum errors are 30% and 
8%, respectively. For all cases, the mean deviation 
between calculated ratios and the correlations is less 
than 4.5%. Since these deviations are in the range of 
accuracy of the correlations and of the Nusselt and 
Sherwood numbers, the effect of surface velocity is 
completely taken in account through the variation of 
NM: and Slryj. Thus, the correlations obtained above 
are still valid for a surface tangential velocity different 
from zero. 

CONCLUSIONS 

The solution of constant-property boundary-layer 

equations for momentum, mass and energy transport 
in the flow over a sphere and their coupled boundary 
conditions is obtained by series solution. The inter- 
diffusion term in the energy equation is considered in 
the analysis. Only the first three terms in the series are 
retained and it has been verified that, for most cases, 
they suffice to determine the heat and mass transfer 
characteristics of the flow. 

The results of a large number of calculations are 

presented in the form of ratios of Nusselt and 
Sherwood numbers with and without phase change. 
These calculations span a large range of the relevant 
dimensionless parameters. The data points have been 
correlated by the heat and mass transfer numbers, 
defined in terms of the mean specific heat for the 
flow and the fraction rates of phase change. A global 
interdiffusion parameter is defined and it is shown that 
the Nusselt number ratio is better correlated when 
this parameter is included. Due to the large range of 
transfer numbers considered, a power dependency on 
the transfer numbers is not enough to represent the 
data. High order correlations are presented which 
better represent the data trends. The obtained blowing 
corrections represent the high Reynolds number 
asymptotes to be used in the extended film theory. The 
resulting correlations for the Nusselt and Sherwood 
numbers are then applicable for 0 < Re,) < 1000. 

The validity of the determined correlations when 

the surface tangential velocity is different from zero 
is evaluated through sensibility analysis. The surface 
tangential velocity is assumed to be equal to a fraction 
(10, 20 and 30%) of the ideal flow tangential velocity 
and the Nusselt and Sherwood numbers are then 
evaluated for several cases in the studied range of 
parameters. Correlations for the Nusseh number for 
cases with no phase change are determined and the 
ratios of Nusselt and Sherwood numbers with and 
without phase change are then compared with the 
correlations derived previously for no surface velocity. 
The good agreement between correlations and data 
points allows one to extend the validity of the obtained 
blowing corrections for a general surface velocity 
condition. 
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